MATH 2050C Lecture 7 (Feb 7)

Done: IR is the complete ordered-field.

\nGoAL: Define limit of a sequence
$$
lim(X_n) = X
$$
 and study limit properties

\nDefⁿ: A sequence of real numbers is a function

\n $X : N \rightarrow \mathbb{R}$

\nDenote: $X(1) := X_1$, $X(2) =: X_2, \ldots, X(n) =: X_n$

\nWrite: $X = (X_n) = (X_1, X_1, X_1, \ldots)$

\nCauTION: Sets \pm Sequences

\nE.g.) $\left((-1)^n\right) = (-1, 1, -1, 1, \ldots)$ is infinite $\left\{(-1)^n : n \in \mathbb{N}\right\} = \{-1, 1\}$ unordered *imopine finite*

\nExamples of sequences

\n(1) Construct $x e_i$, $(1, 4, 4, 1, 1, \ldots)$

\n(2) geometric $x e_j$, $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right) = \left(\frac{1}{2^n}\right)$

(3) arithmetic seq. $(1.5.9.13.17...)=$ (4n-3) \rightarrow ^{tre}odd seg. (1.3.5.7.9...)
tre
even seg. (2.4.6.8.10...) (4) Fibonacciseq. ("inductively defined") $X_1 := 1$; $X_2 := 1$ $X_n := X_{n-1} + X_{n-2}$ for $n > 3$ $(X_n) = (1, 1, 2, 3, 5, 8, 13, 21, ...)$ Q: How to define the limit of a sequence? Simplest example: $(x_n) = \left(\frac{1}{n}\right) = \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots, \frac{1}{100}, \dots\right)$ We want to say: "lim $\left(\frac{1}{n}\right) = 0$ " because Xn "eventually" are getting "close" to 0 Puantify this! y_n y_4 y_3 y_2 \leftarrow iR \bullet

$$
Example: \int \lim_{n+1} \left(\frac{3n+2}{n+1}\right) = 3
$$

Let E 70 be fixed but arbitrary. Choose $K \in \mathbb{N}$ st. $K \stackrel{s}{\geq} \frac{1}{s}$ (by Archimedean Property) Then. $\forall n > k$,

$$
\left| \frac{3n+2}{n+1} - 3 \right| = \left| \frac{(3n+2) - 3(n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right|
$$

= $\frac{1}{n+1} < \frac{1}{n} \le \frac{1}{K} < \frac{1}{K}$

b

Det²: Given a seq (xn) of real numbers, we say (i) (x_n) is convergent if $\exists x \in \mathbb{R}$ s.t. Lim (x_n) = x (ii) (an) is divergent if (an) is NOT convergent i.e. \mathbb{R} $x \in \mathbb{R}$ s.t. lim $(x_n) = x$

Example of divergent seg

 $Example: (1-1)^n$ is divergent.

Picture:

Now, we come back to Claim: ((-1)") is diversent. Pf: Suppose NOT, i.e. ((-1)") is convergent. By Prop. \exists unique limit $x = \lim ($ (-1)ⁿ). By def? of limit. VE70. 3KGIN s.t. $|(-1)^{n}-x| < \varepsilon$ $\forall n \ge k$. Fix $\xi = 1$ 20, then \exists K \in N st. $|(-1)^n - x| < 1$ $\forall n \geq k$. Fix n. n, zK st n, odd. n, even. Then $2 = 1-1-1 = 1 (-1)^{n_1} - (-1)^{n_2}$ = $((-1)^{n} - x) - ((-1)^{n} - x)]$ \leq $|(-1)^{n} - x| + |(-1)^{n} - x|$ $< 1 + 1 = 2$ Contradiction!

More examples

Example: Let a > 0. Then	Lim $(\frac{1}{1+na}) = 0$		
Let £>0 be fixed but arbitrary.	•	0	
Chaose	KeIN st. $k > \frac{1}{a\epsilon}$?		
Then. $\forall n \ge k$	•	•	
1+na - 0	= $\frac{1}{1+na}$	•	•
= $\frac{1}{1+na} < \frac{1}{na} \le \frac{1}{ka} < \epsilon$			
Example: Let b ∈ (0, 1). Then	Lim $(b^3) = 0$		
Let £>0 be fixed but arbitrary	•		
Chaose	KeIN st. $k > \frac{\log f}{\log b}$	Man: $ b^n - 0 < \epsilon$	
Then. $\forall n \ge k$.	•	•	
[$b^2 - 0$] = $b^2 \le b^k < \epsilon$	•	•	
[$b^2 - 0$] = $b^3 \le b^k < \epsilon$	•		
[$b^2 - 0$] = $b^3 \le b^k < \epsilon$	•		
[$b^2 - 0$] = $b^3 \le b^k < \epsilon$	•		
[$b^2 - 0$] = $b^3 \le b^k < \epsilon$	•		